3.21.14 \(\int \frac {(3+5 x)^2}{(1-2 x)^{5/2} (2+3 x)^2} \, dx\)

Optimal. Leaf size=81 \[ -\frac {130}{1029 \sqrt {1-2 x}}-\frac {365}{294 \sqrt {1-2 x} (3 x+2)}+\frac {121}{42 (1-2 x)^{3/2} (3 x+2)}+\frac {130 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{343 \sqrt {21}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {89, 78, 51, 63, 206} \begin {gather*} -\frac {130}{1029 \sqrt {1-2 x}}-\frac {365}{294 \sqrt {1-2 x} (3 x+2)}+\frac {121}{42 (1-2 x)^{3/2} (3 x+2)}+\frac {130 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{343 \sqrt {21}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^2/((1 - 2*x)^(5/2)*(2 + 3*x)^2),x]

[Out]

-130/(1029*Sqrt[1 - 2*x]) + 121/(42*(1 - 2*x)^(3/2)*(2 + 3*x)) - 365/(294*Sqrt[1 - 2*x]*(2 + 3*x)) + (130*ArcT
anh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(343*Sqrt[21])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(3+5 x)^2}{(1-2 x)^{5/2} (2+3 x)^2} \, dx &=\frac {121}{42 (1-2 x)^{3/2} (2+3 x)}-\frac {1}{42} \int \frac {-15+525 x}{(1-2 x)^{3/2} (2+3 x)^2} \, dx\\ &=\frac {121}{42 (1-2 x)^{3/2} (2+3 x)}-\frac {365}{294 \sqrt {1-2 x} (2+3 x)}-\frac {65}{147} \int \frac {1}{(1-2 x)^{3/2} (2+3 x)} \, dx\\ &=-\frac {130}{1029 \sqrt {1-2 x}}+\frac {121}{42 (1-2 x)^{3/2} (2+3 x)}-\frac {365}{294 \sqrt {1-2 x} (2+3 x)}-\frac {65}{343} \int \frac {1}{\sqrt {1-2 x} (2+3 x)} \, dx\\ &=-\frac {130}{1029 \sqrt {1-2 x}}+\frac {121}{42 (1-2 x)^{3/2} (2+3 x)}-\frac {365}{294 \sqrt {1-2 x} (2+3 x)}+\frac {65}{343} \operatorname {Subst}\left (\int \frac {1}{\frac {7}{2}-\frac {3 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=-\frac {130}{1029 \sqrt {1-2 x}}+\frac {121}{42 (1-2 x)^{3/2} (2+3 x)}-\frac {365}{294 \sqrt {1-2 x} (2+3 x)}+\frac {130 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{343 \sqrt {21}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 55, normalized size = 0.68 \begin {gather*} -\frac {-130 \left (6 x^2+x-2\right ) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {3}{7}-\frac {6 x}{7}\right )-7 (365 x+241)}{1029 (1-2 x)^{3/2} (3 x+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^2/((1 - 2*x)^(5/2)*(2 + 3*x)^2),x]

[Out]

-1/1029*(-7*(241 + 365*x) - 130*(-2 + x + 6*x^2)*Hypergeometric2F1[-1/2, 1, 1/2, 3/7 - (6*x)/7])/((1 - 2*x)^(3
/2)*(2 + 3*x))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.12, size = 70, normalized size = 0.86 \begin {gather*} \frac {-390 (1-2 x)^2+3465 (1-2 x)-5929}{1029 (3 (1-2 x)-7) (1-2 x)^{3/2}}+\frac {130 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{343 \sqrt {21}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(3 + 5*x)^2/((1 - 2*x)^(5/2)*(2 + 3*x)^2),x]

[Out]

(-5929 + 3465*(1 - 2*x) - 390*(1 - 2*x)^2)/(1029*(-7 + 3*(1 - 2*x))*(1 - 2*x)^(3/2)) + (130*ArcTanh[Sqrt[3/7]*
Sqrt[1 - 2*x]])/(343*Sqrt[21])

________________________________________________________________________________________

fricas [A]  time = 1.14, size = 85, normalized size = 1.05 \begin {gather*} \frac {65 \, \sqrt {21} {\left (12 \, x^{3} - 4 \, x^{2} - 5 \, x + 2\right )} \log \left (\frac {3 \, x - \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 7 \, {\left (780 \, x^{2} + 2685 \, x + 1427\right )} \sqrt {-2 \, x + 1}}{7203 \, {\left (12 \, x^{3} - 4 \, x^{2} - 5 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x)^2,x, algorithm="fricas")

[Out]

1/7203*(65*sqrt(21)*(12*x^3 - 4*x^2 - 5*x + 2)*log((3*x - sqrt(21)*sqrt(-2*x + 1) - 5)/(3*x + 2)) + 7*(780*x^2
 + 2685*x + 1427)*sqrt(-2*x + 1))/(12*x^3 - 4*x^2 - 5*x + 2)

________________________________________________________________________________________

giac [A]  time = 1.26, size = 77, normalized size = 0.95 \begin {gather*} -\frac {65}{7203} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {11 \, {\left (24 \, x + 65\right )}}{1029 \, {\left (2 \, x - 1\right )} \sqrt {-2 \, x + 1}} - \frac {\sqrt {-2 \, x + 1}}{343 \, {\left (3 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x)^2,x, algorithm="giac")

[Out]

-65/7203*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 11/1029*(24*x +
 65)/((2*x - 1)*sqrt(-2*x + 1)) - 1/343*sqrt(-2*x + 1)/(3*x + 2)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 54, normalized size = 0.67 \begin {gather*} \frac {130 \sqrt {21}\, \arctanh \left (\frac {\sqrt {21}\, \sqrt {-2 x +1}}{7}\right )}{7203}+\frac {121}{147 \left (-2 x +1\right )^{\frac {3}{2}}}-\frac {44}{343 \sqrt {-2 x +1}}+\frac {2 \sqrt {-2 x +1}}{1029 \left (-2 x -\frac {4}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x+3)^2/(-2*x+1)^(5/2)/(3*x+2)^2,x)

[Out]

121/147/(-2*x+1)^(3/2)-44/343/(-2*x+1)^(1/2)+2/1029*(-2*x+1)^(1/2)/(-2*x-4/3)+130/7203*arctanh(1/7*21^(1/2)*(-
2*x+1)^(1/2))*21^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.27, size = 74, normalized size = 0.91 \begin {gather*} -\frac {65}{7203} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {2 \, {\left (195 \, {\left (2 \, x - 1\right )}^{2} + 3465 \, x + 1232\right )}}{1029 \, {\left (3 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} - 7 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x)^2,x, algorithm="maxima")

[Out]

-65/7203*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 2/1029*(195*(2*x - 1)^2
+ 3465*x + 1232)/(3*(-2*x + 1)^(5/2) - 7*(-2*x + 1)^(3/2))

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 55, normalized size = 0.68 \begin {gather*} \frac {\frac {110\,x}{49}+\frac {130\,{\left (2\,x-1\right )}^2}{1029}+\frac {352}{441}}{\frac {7\,{\left (1-2\,x\right )}^{3/2}}{3}-{\left (1-2\,x\right )}^{5/2}}+\frac {130\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{7203} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x + 3)^2/((1 - 2*x)^(5/2)*(3*x + 2)^2),x)

[Out]

((110*x)/49 + (130*(2*x - 1)^2)/1029 + 352/441)/((7*(1 - 2*x)^(3/2))/3 - (1 - 2*x)^(5/2)) + (130*21^(1/2)*atan
h((21^(1/2)*(1 - 2*x)^(1/2))/7))/7203

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**2/(1-2*x)**(5/2)/(2+3*x)**2,x)

[Out]

Timed out

________________________________________________________________________________________